

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 [image: logo]

HMNI

[image: _images/hmni.svg]GitHub
[image: _images/hmni1.svg]PyPI
[image: _images/hmni2.svg]PyPI - Python Version
[image: _images/104462522872f975d36f2d8f39dfcbc3aef7d3c6.svg]Documentation Status [https://hmni.readthedocs.io/en/latest/?badge=latest]
[image: _images/hmni3.svg]PyPI - Downloads
[image: _images/hmni4.svg]GitHub repo size

Fuzzy name matching with machine learning. Perform common fuzzy name matching tasks including similarity scoring, record linkage, deduplication and normalization.

HMNI is trained on an internationally-transliterated Latin firstname dataset, where precision is afforded priority.

| Model | Accuracy | Precision | Recall | F1-Score
|————-|———–|———–|———–|———–
| HMNI-Latin | 0.9393 | 0.9255 | 0.7548 | 0.8315

For an introduction to the methodology and research behind HMNI, please refer to my blog post [https://towardsdatascience.com/fuzzy-name-matching-with-machine-learning-f09895dce7b4].

Requirements

Python 3.5–3.8

	tensorflow

	scikit-learn

	fuzzywuzzy

	abydos

	unidecode

QUICK USAGE GUIDE

Installation

Using PIP via PyPI

pip install hmni

Initialize a Matcher Object

import hmni
matcher = hmni.Matcher(model='latin')

Single Pair Similarity

matcher.similarity('Alan', 'Al')
0.6838303319889133

matcher.similarity('Alan', 'Al', prob=False)
1

matcher.similarity('Alan Turing', 'Al Turing', surname_first=False)
0.6838303319889133

Record Linkage

import pandas as pd

df1 = pd.DataFrame({'name': ['Al', 'Mark', 'James', 'Harold']})
df2 = pd.DataFrame({'name': ['Mark', 'Alan', 'James', 'Harold']})

merged = matcher.fuzzymerge(df1, df2, how='left', on='name')

Name Deduplication and Normalization

names_list = ['Alan', 'Al', 'Al', 'James']

matcher.dedupe(names_list, keep='longest')
['Alan', 'James']

matcher.dedupe(names_list, keep='frequent')
['Al, 'James']

matcher.dedupe(names_list, keep='longest', replace=True)
['Alan, 'Alan', 'Alan', 'James']

Matcher Parameters

hmni.Matcher(model=’latin’, prefilter=True, allow_alt_surname=True, allow_initials=True, allow_missing_components=True)

	model (str) – HMNI statistical model (latin by default)

	prefilter (bool) – Should the matcher prefilter unlikely candidates (True by default)

	allow_alt_surname (bool) – Should the matcher consider phonetic matching surnames e.g. Smith, Schmidt (True by default)

	allow_initials (bool) – Should the matcher consider names with initials (True by default)

	allow_missing_components (bool) – Should the matcher consider names with missing components (True by default)

Matcher Methods

similarity(name_a, name_b, prob=True, surname_first=False)

	name_a (str) – First name for comparison

	name_b (str) – Second name for comparison

	prob (bool) – If True return a predicted probability, else binary class label

	threshold (float) – Prediction probability threshold for positive match (0.5 by default)

	surname_first (bool) – If name strings start with surname (False by default)

fuzzymerge(df1, df2, how=’inner’, on=None, left_on=None, right_on=None, indicator=False, limit=1, threshold=0.5, allow_exact_matches=True, surname_first=False)

	df1 (pandas DataFrame or named Series) – First/Left object to merge with

	df2 (pandas DataFrame or named Series) – Second/Right object to merge with

	how (str) – Type of merge to be performed

	inner (default): Use intersection of keys from both frames, similar to a SQL inner join; preserve the order of the left keys

	left: Use only keys from left frame, similar to a SQL left outer join; preserve key order

	right: Use only keys from right frame, similar to a SQL right outer join; preserve key order

	outer: Use union of keys from both frames, similar to a SQL full outer join; sort keys lexicographically

	on (label or list) – Column or index level names to join on. These must be found in both DataFrames

	left_on (label or list) – Column or index level names to join on in the left DataFrame

	right_on (label or list) – Column or index level names to join on in the right DataFrame

	indicator (bool) – If True, adds a column to output DataFrame called “_merge” with information on the source of each row (False by default)

	limit (int) – Top number of name matches to consider (1 by default)

	threshold (float) – Prediction probability threshold for positive match (0.5 by default)

	allow_exact_matches (bool) – If True allow merging on exact name matches, else do not consider exact matches (True by default)

	surname_first (bool) – If name strings start with surname (False by default)

dedupe(names, threshold=0.5, keep=’longest’, reverse=True, limit=3, replace=False, surname_first=False)

	names (list) – List of names to dedupe

	threshold (float) – Prediction probability threshold for positive match (0.5 by default)

	keep (str) – Specifies method for keeping one of multiple alternative names

	longest (default): Keeps longest name

	frequent: Keeps most frequent name in names list

	reverse (bool) – If True will sort matches descending order, else ascending (True by default)

	limit (int) – Top number of name matches to consider (3 by default)

	replace (bool) – If True return normalized name list, else return deduplicated name list (False by default)

	surname_first (bool) – If name strings start with surname (False by default)

assign_similarity(name_a, name_b, score)

	name_a (str) – First name for similarity score assignment

	name_b (str) – Second name for similarity score assignment

	score (float) – Assigned similarity score for pair of names

Contributing

Pull requests are welcome.
For developers wishing to build a model using Latin or non-Latin writing systems (Chinese, Cyrillic, Arabic),
jupyter notebooks are shared in the dev folder to build models using similar methods.

License

MIT [https://choosealicense.com/licenses/mit/]

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up-pressed.png

_static/up.png

